						VASIREDE	Y VENKATA	ADRI INSTIT
					DEI	PARTMENT	OF ELECTRI	
								D CO-PO-PS
	1		- I.a. 1.111		1. 1.11			.TECH I S
		CO1				s and comp	rehension.	
		CO2		•	essential gra			
		соз	_			ews and op		
		CO4		-		d core skills	•	
н		CO5		· ·	vocabulary.			
	∓	CO6	An ability t	o write effe	ectively.			
R13101	ENGLISH-I		PO1	PO2	PO3	PO4	PO5	PO6
2		C01	-	-	-	-	-	-
		C02	-	-	-	-	-	-
		C03	-	-	-	-	-	-
		C04	-	-	-	-	-	-
		C05	-	-	-	-	-	-
		C06	-	-	-	-	-	-
								-
		CO1					equations a	<u>.</u>
		CO2				-	al equations	
		соз	Able to learn Laplace transforms and solve initial value problen					
		CO4	Able to learn Partial differentiation.					
	S-S-	CO5	Able to Solve first order partial differential equations.					
25	MATHEMATICS-I	CO6		equations.				
R13102	≧		PO1	PO2	PO3	PO4	PO5	PO6
2	🖺	C01	3	2	1	-	-	-
	×	C02	2	2	1	-	-	-
	_	C03	2	1	1	-	-	-
		C04	2	1	2	-	-	-
		C05	2	2	1	-	-	-
		C06	3	2	1	-	-	-
	_	1		1				
		CO1					s using Nun	nerical met
		CO2		•	ion method		1 1	lice :
		CO3					olve ordinar	y differenti
		CO4	Able to find	d Fourier se	ries for cert	tain functio	ns.	

⋛	
٤	
둣	
ర్జ	
Α	
⋈	
Ξ	
₹	
_	

R13107

CO1	Able to find roots of transcendental equations using Numerical meth
CO2	Able to use interpolation methods.
соз	Able to use different numerical methods to solve ordinary differentia
CO4	Able to find Fourier series for certain functions.
CO5	Able to find Fourier transforms for certain functions.
CO6	Able to solve difference equations using Z transforms.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	3	-	-	-
C02	2	3	1	-	-	-
C03	2	2	1	-	-	-
C04	2	2	1	-	-	-

		C05	2	2	3	-	-	-		
		C06	2	2	3	-	-	-		
		CO1			ty to apply k					
		CO2				· · · · · ·		n solving pro		
		CO3						nciples of Ph		
		CO4	Students w	ill able to a	nalyze the c	haracterist	ics and perf	ormance of		
	٠,	CO5	Students w	vill able to e	xplain the C	luantum M	echanics an	d Electron T		
	2	CO6	Students w	Students will able to explain the developed and performance of Sem						
103	¥									
R13103	ENGG. PHYSICS		PO1	PO2	PO3	PO4	PO5	PO6		
œ		C01	3	3	1	2	-	-		
		C02	2	2	3	2	2	-		
		C03	2	2	2	2	2	-		
		C04	3	2	3	2	3	-		
		C05	3	2	2	1	2	-		
		C06	3	3	3	1	1	-		
	!	•		!			ļ.			
	S	CO1	Able to intr	roduce the	basic philos	ophy of mo	rals, values	and ethics t		
	MAN VALUES	CO2	Able to imp	oart reason	ing and anal	ytical skills	needed to a	apply ethical		
		CO3	Able to ide	ntify the m	oral issues ir	nvolved in b	oth manag	ement and e		
	Ź	CO4	Able to und	derstand th	e unethical	errors com	mitted by th	ne engineers		
	ĮΣ	CO5	Able to mir	nimize the o	occupational	crimes in t	he corporat	te sector by		

PROFESSIONAL ETHICS & HUN

R13108

R13109

Able to Focus on intellectual property rights and ethical engineering. CO6

	PO1	PO2	PO3	PO4	PO5	PO6
C01	1	-	-	1	1	-
C02	2	-	-	2	1	-
C03	1	-	-	3	1	-
C04	2	-	-	1	2	-
C05	2	-	-	1	1	-
C06	1	-	-	1	2	-

ENGG. DRAWING

CO1	Able to understand different scales used in industry and draw variou
CO2	Able to recognize principles of projections to draw orthographic proj
соз	Able to interpret the projection principles to draw projections of stra
CO4	Able to understand the various ways to draw projection of planes.
CO5	Able to draw projections of solids by applying principles of orthograp
CO6	Able to convert isometric views into orthographic views and orthographic

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	2	-	-	-
C02	3	2	2	-	-	-
C03	3	2	2	-	-	-
C04	2	2	2	-	-	-

	C06	-

ENGLISH COMMUNICATION SKILLS LAB-I

CO1	Ability to analysis a topic of discussion & reading to it.
CO2	Ability to participate in discussion & influence them.
соз	Ability to communicate ideas effectively.
CO4	Ability to present opinions coherently within a stipulated time.
CO5	Ability to speak clearly & coordinate with them.
CO6	Ability to improve upon English language pronunciation.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	-	-	-	-	-	-
C02	-	-	-	-	-	-
C03	-	-	-	-	-	-
C04	-	-	-	-	-	-
C05	-	-	-	-	-	-
C06	-	-	-	-	-	-

ENGINEERING PHYSICS LAB

CO1	Able to under stand basic knowledge fphysics & experimental experie
CO2	Able to understand basic electronics & experimental experience of e
CO3	Able to understand electromagnetism and experimental experience.
CO4	Able to understand the light properties & experimental experience c

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1	-	-	-	1
C02	3	-	3	-	2	2
C03	3	-	-	-	-	2
C04	3	1	1	-	-	3

ENGINEERING WORKSHOP & IT WORKSHOP

CO1	To select suitable carpentry tools to prepare different types of joints
CO2	To identify tools required in the fitting operation to perform joint pro
соз	To understand the process of making different objects with thin sheet
CO4	To differentiate single phase, 3 phase wiring connections.
CO5	Identify the basic computer peripheral and gain sufficient knowledge
CO6	Learn the installation procedure of Windows and Linux OS,
CO7	Acquire knowledge on basic networking infrastructure and acquire k
CO8	Learn productivity tools like Word, Excel and Power point.
	•

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	-	1	-	-	1
C02	2	1	-	-	-	1
C03	2	1	-	-	-	1
C04	1		-	-	-	1
C05	2	1	-	-	2	-
C06	2	2	-	2	2	=

C07	1	1	1	1	2	-
C08	1	2	-	-	2	-

							IB.	TECH II S
		CO1	An ability t	o improve r	eading skills	and comp	rehension.	
		CO2	An ability t	o improve e	essential gra	mmar.		
		соз	An ability t	o interact a	nd share vie	ws and opi	nions.	
		CO4	An ability t	o improve l	ife skills and	l core skills.		
		CO5	An ability t	o improve v	ocabulary.			
	_	CO6	An ability t	o write effe	ctively.			
:01	<u> </u>							
R13201	ENGLISH-II		PO1	PO2	PO3	PO4	PO5	PO6
~	Š	C01	-	-	-	-	-	-
	1				i		-	i

MATHEMATICS-III

R13202

R13204

	_	_		_		
C01	-	-	1	-	-	-
C02	-	-	-	-	-	-
C03	-	-	-	-	-	-
C04	-	-	-	-	-	-
C05	-	-	-	-	-	-
C06	-	-	-	-	-	-

Able to solve system of linear equations using matrices.

Able to find Eigen values - Eigen vectors.

Able to evaluate multiple integrals and application of integrals.

Able to evaluate integrals using special functions.

Able to understand grad, curl and divergent of scalar and vector points.

Able to understand relation between line, surface and volume integrals.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	1	-	-	-
C02	2	2	1	-	-	-
C03	2	1	1	-	-	-
C04	2	1	2	-	-	-
C05	2	2	1	-	-	-
C06	3	2	1	-	=	-

C02	2	2	1	-	-	-			
C01	3	2	1	-	-	-			
	PO1	PO2	PO3	PO4	PO5	PO6			
CO6	They are w	ell known a	bout advan	ced enginee	ering materi	ials like car			
CO5	They gain t	the knowled	lge about co	onducting th	ne polymers	& fiber rei			
CO4	Able to un	derstand th	e working o	f IC engines	& refining of	of petrol.			
соз	They are w	ell known a	bout corros	sion prevent	ive measur	ements.			
CO2	They gain I	knowledge a	about const	ruction & w	orking of st	orage devi			
CO1	Able to un	Able to understand the water quality analysis & preparation techniq							

C04	2	1	2	-	-	-
C05	2	2	1	-	-	-
C06	3	2	1	-	-	-

R13210
ENGG.MECHANICS

CO1	Able to explain the concepts of force and friction, direction and its a
CO2	Able to explain the application of free body diagrams. Solution to pro
CO3	Able to explain the concepts of centre of gravity.
CO4	Able to explain the concepts, moment of inertia and polar moment of
CO5	Able to explain the motion in straight line and in curvilinear paths, it
CO6	Able to explain the concepts of work, energy and particle motion Stu

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	3	-	2	2	3
C02	2	2	-	2	2	3
C03	2	2	-	2	2	3
C04	3	2	-	2	3	3
C05	3	2	-	1	2	2
C06	3	3	-	1	1	3

Electrical Circuit Analysis - I

R13212

R13205

CO1	Able to solve Various electrical networks in presence of active and page 1
CO2	Able to solve any R, L, C network with sinusoidal excitation.
CO3	Able to solve any R, L, C network with variation of any one of the par
CO4	Able to solve any magnetic circuit with various dot conventions.
CO5	Able to solve electrical networks with network topology concepts.
CO6	Able to solve electrical networks by using principles of network theo

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	2			
C02	3	2	1			
C03	2	2	2	1		
C04	3	2	2	1		1
C05	3	2	3	1		1
C06	3	2	1	1		

OMPUTER PROGRAMMING

CO1	Design algorithmic solutions to problems and implementing algorithmic
CO2	Illustrate branching, iteration and data representation using arrays.
соз	Implement modular programming and recursive solution formulation
CO4	Comprehend pointers and dynamic memory allocation.
CO5	Implement user defined data types like structures and unions in C.
CO6	Comprehend file operations.
	

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	2	-	3	-
C02	1	1	1	-	2	-
C03	3	3	2	2	-	-

Ö	C04	1	2	3	3	-	-
	C05	3	3	3	3	1	-
	C06	2	3	3	3	-	-

_	
~	
O	
\vdash	
-	
4	
~	
=	
J	
m	
◂	
>	
~	
뽀	
_	
Ċ	
~	
_	
2	
而	
=	
I	
\overline{c}	
٠,	
/ <u>-</u> i	
G	
Ō	
\subseteq	
2	
<u></u>	
ш	

CO1	Able to understand water quality analysis.
CO2	Able to understand significance of potentiometric &conductometric
CO3	Able to analyze redoxometric titrations.
CO4	Able to do quality analysis of cool drinks.
CO5	Able to estimate amount of vitamin-c present in capsules.
CO6	Able to determine concentration of unknown solutions by colorimet

	PO1	PO2	PO3	PO4	PO5	PO6
C01	1	2	-	-	-	2
C02	1	1	-	-	-	-
C03	1	1	-	-	-	-
C04	1	1	-	-	-	-
C05	1	2	-	-	-	1
C06	1	2	-	_	-	2

ENGLISH-COMMUNICATION SKILLS LAB-II

CO1	Ability to analysis a topic of discussion & reading to it.
CO2	Ability to participate in discussion & influence them.
соз	Ability to communicate ideas effectively.
CO4	Ability to present opinions coherently within a stipulated time.
CO5	Ability to speak clearly & coordinate with them.
CO6	Ability to improve upon English language pronunciation.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	-	-	-	-	-	-
C02	-	-	-	-	-	-
C03	-	-	-	-	-	-
C04	-	-	-	-	-	-
C05	-	-	-	-	-	-
C06	1	-	-	-	1	-

C.PROGRAMMING LAB

		Read, understand and trace the execution of programs written in C l
		Write the C code for a given algorithm over numeric values and math
[CO3	Implement Programs with pointers and arrays, perform pointer arith
		Implementing modular and recursive programs
		Write programs that perform operations using derived data types
[CO6	Implement programs for data transfers between files

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	3	-	-	-
C02	2	2	2	3	-	-
C03	2	2	2	3	-	-

C04	2	-	2	3	-	-
C05	2	2	1	2	-	-
C06	2	2	2	-	-	-

II B.TECH I S

Electrical Circuit Analysis-II

RT21021

RT21022

RT21024

Students are able to solve three- phase circuits under balanced cond

Students are able to solve three- phase circuits under unbalanced co

Students are able find out transient response of electrical networks of students are able to estimate the different types of two port networks of Students are able to represent electrical equivalent network for a give Students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics components from the students are able to extract different harmonics.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	-	-	-	-
C02	2	2	-	-	-	-
C03	1	2	-	-	-	-
C04	2	2	-	-	-	-
C05	2	2	-	-	-	-
C06	2	1	-	-	-	-

Thermal and Hydro Prime Movers

Co1 Classify the heat engines , understand the working principles of IC er
Co2 Discuss about the properties of steam, analysis of ranking cycle and co3
Understand and analysis of Gas turbines
Co4 Identify the significance of impulse momentum equation, understand Co5 Classify , working & design principles of hydraulic turbine including it
Co6 Understand about hydro-electric power plant and calculation of differences.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	1	1	0	0	0
C02	2	2	3	3	2	0
C03	3	0	0	3	3	0
C04	2	2	2	2	3	0
C05	3	2	2	2	1	0
C06	3	2	2	3	2	1

VARIABLE AND STATISTICAL METHODS

CO1	Apply mathematical reasoning and the theory of complex variables t
CO2	Able to apply differnt integral theorems
CO3	Able to understand differnt types of singularities and residue theore
CO4	Able to apply different transformations methods.
CO5	Calculate fundamental concepts such as the cumulative distribution
CO6	Apply this knowledge to identify of Hypothesis testing by using the s

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	1	1	-	-
C02	3	2	2	2	2	3

	E	C03	2	2	2	1	2	2
	Δ <u>P</u>	C04	3	2	3	2	3	2
CO	8	C05	2	1	2	2	2	3
		C06	2	3	3	1	1	2

RT21025
ELECTROMAGNETIC FIELDS

CO1	Ability to calculate electric field and potentials using guass's law or s
CO2	Learn how to calculate capacitance, energy stored in dielectrics and
соз	Ability to find magnetic field intensity due to current, the application
CO4	Students can calculate the magnetic forces and torque produced by
CO5	Will the able to calculate self and mutual inductances and the energ
CO6	Students will gain knowledge on time varying fields and get ability to

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	3			
C02	3	2	2	2		1
C03	3	2	3	2		1
C04	2	2	2	2	1	1
C05	3	2	1	1		
C06	2	2	1	1		

ELECTRICAL MACHINES – I

RT21026

CO1	Able to explain the concepts of electromagnetic energy c	onversion.
CO2	Able to explain the operation of dc generator, armature r	eaction and
соз	Able to analyze the characteristics and performance of do	c generator:
CO4	Able to explain the torque developed and performance o	f dc motors
CO5	Able to analyze the speed control and testing methods of	f dc motors.
CO6	Able to propose design aspects of a dc machine.	

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	1			
C02	3	2	3			
C03	3	2	2			
C04	3	2	3			
C05	2	2	2			
C06	2	3	3			

3ICAL CIRCUITS LAB

CO1	Able to experimentally verify the basic circuit theorems.
CO2	Able to draw the locus diagrams, waveforms and phasor diagrams for
соз	Able to determine the two port parameters of a given electric circuit
CO4	To measure power and power factor in 3- phase circuit for unbalance
CO5	Able to know the resonance condition of a given network.
	•

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	2	2		2

ELECTF

C02	2	1	1	1	2
C03	2	2	1	1	1
C04	2	2	2	1	2
C05	2	1	2	1	1

II B.TECH II S

STUDIES
ONMENTAL
ENVIRO

RT22021

RT22022

F22023

CO1	Understand the multidisciplinary nature of environmental studies an
CO2	Natural resources and their importance, conservation measures.
соз	Biodiversity and its conservation practices.
CO4	Various attributes of pollution & its control, solid waste managemen
CO5	Social issues both rural & urban, environmental legislation's of India.
CO6	Environmental management- EIA.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	1	-	-	-
C02	2	2	1	-	-	-
C03	2	1	1	-	-	-
C04	2	1	2	-	-	-
C05	2	2	1	-	-	-
C06	3	2	1	-	-	-

SWITCHING THEORY AND LOGIC DESIGN

CO1	Students will be aware of the philosophy of number systems and coo
	Students will be able to minimize the logic expressions using map me
	Students will be able to design the combinational logic circuits using
CO4	Students will be able to design different PLD's such as PROM, PAL, Pl
CO5	Students will be able to use the concepts of various flip-flops, counted
CO6	Students will be able to design asynchronous circuits like FSMs.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	1			
C02	2	2	2	2	1	1
C03	3	3	2	1		
C04	3	2	2	2	1	1
C05	3	2	2	1	1	
C06	2	3	2	2	2	1

GITAL CIRCUITS

PO1

PO2

CO1	Understand and Apply the concept of linear wave shaping circuits lik
CO2	Analyze the nonlinear wave shaping circuits like clippers & clampers
соз	Examine the switching characteristics of nonlinear elements used in
CO4	Create the different types of multivibrator circuits.
CO5	Evaluate different types of voltage and current time base generators
CO6	Illustrate the principles of synchronisation and frequency division an
	•

PO3

PO4

PO5

PO6

E	8 0	C01	1	3	-	-	-	-
	SE &	C02	1	3	-	-	-	-
	PUL	C03	1	2	3	-	-	-
	"	C04	1	2	3	-	-	-
		C05	-	-	-	-	-	-
		C06	-	2	-	-	-	-

RT22024
POWER SYSTEMS-I

CO1	Students are able to identify the different components of thermal po
CO2	Students are able to identify the different components of nuclear Po
CO3	Students are able to distinguish between AC & DC distribution syster
CO4	Students are able to locate the different components of an air and ga
CO5	Students are able to identify single core and multi core cables with d
CO6	Students are able to analyse the effect of load factor, demand factor

	PO1	PO2	PO3	PO4	PO5	PO6	
C01	2	2	2				
C02	2	2	2	2		1	
C03	3	3	2	2		1	
C04	2	2	2	2	1	1	
C05	3	1	1	1			
C06	2	2	1	1			

ELECTRICAL MACHINES – II

RT22025

CO1	Able to explain the operation and performance of single phase trans
CO2	Able to explain the regulation losses and efficiency of single phase tr
соз	Able to explain types of three phase transformer connection, tap cha
CO4	Able to explain the operation and performance of three phase induc
CO5	Able to analyze the torque-speed relation, performance of induction
CO6	Able to explain design procedure for transformers and three phase in

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	2		0	
C02	3	2	2	2	0	1
C03	3	1	2	2	0	1
C04	2	2	2	2	0	1
C05	2	1	1	1	0	
C06	3	2	1	1	0	

	CO1	Ability to derive the transfer function of physical systems and detern
	CO2	Capability to determine time response specifications of second order
	соз	Acquires the skill to analyze absolute and relative stability of LTI syst
	CO4	Capable to analyze the stability of LTI systems using frequency respo
ΔIS	CO5	Able to design Lag, Lead, Lag-Lead compensators to improve system
		

CONTROL SYSTE! CO6 Ability to represent physical systems as state models and determine RT22026 PO6 PO1 PO2 PO3 PO4 PO₅ C01 2 3 1 1 C02 2 2 1 C03 2 2 C04 2 2 C05 2 2 C06 1 1

ELECTRICAL MACHINES – I LAB

CO1	To determine and predetermine the performance of DC machines.
CO2	To control the speed of DC motor.
CO3	To determine and predetermine the performance of Transformer.
CO4	To achieve three phase to two phase transformation

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	1	1	1	
C02	2	2	1	1	1	
C03	2	2	1	1	1	
C04	2	2	1	1	1	

ELECTRONIC DEVICES & CIRCUITS LAB

CO1	Able To understand the characteristics of PN Junction and Zenor dioc
CO2	Able To draw the characteristics of BJT, FET, SCR and UJT
	Able To Analyze the applications of PN Junction as Rectifier
CO4	Able To analyze the operation of BJT and FET as a amplifier
CO5	Able To understand the operation of CRO

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1	1	1	1	
C02	2	1	1	1	1	
C03	2	1	1	1	1	
C04	2	1	1	1	1	
C05	2	1	1	1	1	

CONOMICS AND FINANCIAL ANALYSIS

RT31022

CO1	Introduce Managerial Economics to engineering students, concepts of
CO2	Evaluate the student knowledge of production & cost estimation.
соз	Introduce markets, theory of the firm and pricing policies in differen
CO4	To know the different forms of business organization and their merit
CO5	Understand the different accounting systems preparation of financia
CO6	Understand the concepts of capital, capitalization techniques used to

III B.TECH I S

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	-	-	-	-

ָר ה	C02	3	3	3	-	-	-
RIA	C03	2	3	3	2	-	-
4GE	C04	2	3	3	3	-	-
AN/	C05	2	3	3	3	-	-
Σ	C06	2	3	3	3	-	-

	Π	CO1	CO1 Able to choose right type of instrument for measurement of voltage									
		CO2		t of power a								
	S	соз	r.	<u> </u>								
	MEASUREMENTS	CO4	Able to sele	ect suitable	bridge for r	neasureme	nt of electri	cal paramet				
	<u> </u>	CO5	Able to use	the ballisti	c galvanom	eter and flu	x meter for	magnetic m				
_	l RE	CO6	Able to measure frequency and phase difference between signals us									
RT31021	ASI											
131	Σ		PO1	PO2	PO3	PO4	PO5	PO6				
Ľ.	Ŋ.	C01	2	2	2		2					
	8	C02	2	2	1		1					
	ELECTRICAL	C03	2	1	1		1					
	=	C04	1	1			1					

C01	2	2	2		2	
C02	2	2	1		1	
C03	2	1	1		1	
C04	1	1			1	
C05	1	1	1			1
C06	1	2	2	1	1	
	-					

		co1 Able to understand parameters of various types of transmission lin								
		CO2	Able to und	derstand the	e insight int	o specific tr	ansmission	lines short a		
		CO3	able to und	lerstand the	e surge prop	agation, re	flection and	refraction i		
		CO4	Able to util	ize it for un	derstanding	the surge l	oehaivour o	f transmissi		
	₹	CO5	Able to und	derstand va	rious pheno	menon rela	ted to char	ged line trar		
•	Σ	CO6	Able to und	derstand ph	ysical and g	eometrical	parameters	of transmis		
RT31023	SYSTEMS-I									
T31			PO1	PO2	PO3	PO4	PO5	PO6		
œ	POWER	C01	2	3	3					
	Š	C02	3	3	1					
	"	C03	1	3	1					
		C04	1	1						
		C04	_	_						

	CO1	Analyze the performance of single phase induction and ac series mot
	CO2	Explain the structure of synchronous machines and design the windi
	соз	Develop solutions for regulation of both non salient pole and salient
	≡ co4	Explain the role of synchronous generators operation when connecte
	CO2	Analyze the performance of synchronous motor for development of
_	CO5 CO6	Explain hunting phenomenon and methods of starting of synchronol

C06

05,	ACI							
RT3102	Σ̈́		PO1	PO2	PO3	PO4	PO5	PO6
	B	C01	3	3	3		2	
	TRIC	C02	3	3	1		1	
	ELEC	C03	3	3	1		1	
		C04	1	1			1	
		C05	1	2	1			
		C06	3	3	3		1	

RT31025
POWER ELECTRONICS

Explain the characteristics of various power semiconductor derive ar
Design firing circuits for SCR. Analyze the operation of AC voltage co
Explain the operation of single phase full–wave converters and analy
Explain the operation of three phase full-wave converters and dual of
Analyze the operation of single phase cyclo converters and high freq
Explain the working of inverters and application of PWM techniques

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	1			
C02	2	2	2	2	1	1
C03	3	3	2	1	0	
C04	3	2	2	2	1	1
C05	3	2	2	1	1	
C06	2	3	2	2	2	1

LINEAR & Digital IC APPLICATIONS

RT31026

CO1	Draw a block diagram representing a typical op-amp with various de
CO2	Differentiate between Ideal and Non-Ideal Op-Amp, Determination of
соз	Perform various mathematical Operations, Trigonometric & Logarith
CO4	Study of 555 timer & its applications using Astable and Monostable (
CO5	Can design various types of Active Filters such as LPF, HPF, BPF, BRF,
CO6	Explain the operation of A/D and D/A Converters.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	3		2	
C02	3	3	1		1	
C03	3	3	1		1	
C04	1	1			1	
C05	1	2	1	3		1
C06	3	3	3	1	1	

CO1	Able to assess the performance of single phase and three phase indu
CO2	Able to control the speed of three phase induction motor.
CO3	Able to predetermine the regulation of three–phase alternator by va

1	Ĕ
	E
	ELECTRICAL MACHINES
	ZAL
	CTRI
	ĒĒ

CO4	Able to find the Xd/ Xq ratio of alternator and asses the performance
-----	---

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1	1	1	1	
C02	2	1	1	1	1	
C03	2	1	1	1	1	
C04	2	1	1	1	1	

CONTROL SYSTEMS LAB

	Able to analyze the performance and working Magnetic amplifier, D.
CO2	Able to design P, PI, PD and PID controllers and design lag, lead and I
CO3	Able to control the temperature using PID controller and determine
CO4	Able to control the position of D.C servo motor performance

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1	-	1	1	
C02	2	1	1	1	1	
C03	1	-	-	-	1	
C04	1	1	1	1	1	

INTELLECTUAL PROPERTY RIGHTS AND PATENTS

RT31016

Understanding, defining and differentiating different types of intelle-
Understanding the Framework of Strategic Management of Intellect
Identify different types of Intellectual Properties (IPs), the right of ov
Recognize the crucial role of IP in organizations of different industria
Identify activities and constitute IP infringements and the remedies a
Understanding, Identify various cybercrimes in online networks

	PO1	PO2	PO3	PO4	PO5	PO6	
C01	-	2	3	2	2	2	
C02	-	2	3	1	2	2	
C03	-	1	2	-	3	3	
C04	1	3	3	2	2	2	
C05	-	-	3	-	2	-	
C06	_	2	2	_	_	2	

T32022

	III B.TECH II S
CO1	To be able to understand the principles of arc interruption for applic
CO2	Ability to understand the working principle and constructional featur
соз	Students acquire in depth knowledge of faults that is observed to oc
CO4	Improves the ability to understand various types of protective schem
CO5	Generates understanding of different types of static relays with a vie
CO6	To be able to understand the different types of over voltages appear
	•

PO1	PO2	PO3	PO4	PO5	PO6

<u>~</u>	AF	C01	3	3	1		
	HGE	C02	3	2	3		
	İ	C03	3	2	2		
	SW	C04	3	2	3		
		C05	2	2	2		
		C06	2	3	3		

MICROPROCESSORS AND MICROCONTROLLERS

RT32021

RT32023

600	To be able to understand the micro controller canability
соз	To be able to understand the micro controller capability
CO4	To be able to program mp and mc
CO5	To be able to interface mp and mc with other electronic devices
CO6	To be able to develop cyber physical systems

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2					
C02	2	1				
C03	2	2	2			
C04	2	2	2			
C05	2					
C06	2	2	2			

UTILIZATION OF ELECTRICAL ENERGY

со	1	Able to identify a suitable motor for electric drives and industrial app
со	2	Able to identify most appropriate heating or welding techniques for
со	3	Able to understand various level of illuminosity produced by differen
со	4	Able to estimate the illumination levels produced by various sources
со		Able to determine the speed/time characteristics of different types of
со	6	Able to estimate energy consumption levels at various modes of ope

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	1	1		
C02	2	2	3	2	1	2
C03	2	3	3	2	1	
C04	1	2	3	1	2	1
C05	3	1	2	2	1	1
C06	1	1	1	1	2	

ANALYSIS

CO1	Able to draw an impedance diagram for a power system network an			
CO2	Able to find out the load flow solution of a power system network us			
Able to formulate the Zbus for a power system network.				
CO4	Able to find out the fault currents for all types faults with a view to p			
CO5	Able to find out the sequence components of currents for any unbal			
CO6	Able to analyze the steady state, transient and dynamic stability con			

RT3202	E							
T32	ST		PO1	PO2	PO3	PO4	PO5	PO6
~	POWER SY	C01	3	3	3	3	3	
		C02	2	2	3	2	1	2
		C03	2	3	3	2	1	
		C04	1	2	3	1	2	1
		C05	3	1	2	2	1	1
		C06	1	1	1	1	2	

POWER SEMICONDUCTOR DRIVES

RT32026

RT32025

	CO1	Explain the fundamentals of electric drive and different electric brak
I	CO2	Analyze the operation of three phase converter controlled dc motors
I	CO3	Explain the converter control of dc motors in various quadrants.
I	CO4	Explain the concept of speed control of induction motor by using AC
ı		Explain the principles of static rotor resistance control and various sl
I	CO6	Explain the speed control mechanism of synchronous motors
ı		

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1				1
C02	2	1				1
C03	2	1				1
C04	2	1				1
C05	2	1				1
C06	2	1				1

MANAGEMENT SCIENCE

CO1	Apply Management Techniques and Strategies to understand and ide
CO2	Design and Conduct a work study and apply the Statistical Quality co
CO3	Discover the need of HRM functions to motivate the employees to a
CO4	Understand and identify various Networking techniques to save the
CO5	Use Various Business Strategies and Corporate planning process to a
CO6	Apply various contemporary management practices like ERP, BPO, TC

	PO1	PO2	PO3	PO4	PO5	PO6	
C01	2	2	-	-	-	-	
C02	2	2	2	-	2	-	
C03	2	1	-	-	3	-	
C04	-	2	3	-	2	-	
C05	2	2	-	-	-	-	
C06	1	1	-	-	-	-	

LAB
<u>ა</u>
Ž

CO1	Able to study the characteristics of various power electronic devices
CO2	Able to analyze the performance of single phase and three phase ful
соз	Able to understand the operation of single phase AC voltage regulate
CO4	Able to understand the working of Buck converter, Boost converter,

0
œ
\vdash
Ü
ш
_
ш
∞
亩
⋝
>
0
Δ.
_

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1				
C02	2	1				
C03	2	1				
C04	1	1				

ELECTRICAL MEASUREMENTS
LAB

CO1	To be able to measure accurately the electrical parameters voltage,		
To be able to measure illumination of electrical lamps.			
CO3	To be able to test transformer oil for its effectiveness.		
CO4	To be able to measure the parameters of inductive coil.		

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1				
C02	1	1				
C03	1	1				
C04	1			1		

RT41021 RENEWABLE ENERGY SOURCES AND SYSTEMS

	IV B.TECH I S	
CO1	Analyze solar radiation data, extraterrestrial radiation, radiation on ϵ	
CO2	Design solar thermal collections.	
CO3 Design solar photo voltaic systems.		
CO4	Develop maximum power point techniques in solar PV and wind.	
CO5	Explain wind energy conversion systems, Betz coefficient, tip speed i	
CO6	Explain basic principle and working of hydro, tidal, biomass, fuel cell	

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3				
C02	1	2				
C03	1	2				
C04	2	2				
C05	3	2				
C06	3	3				

E DC TRANSMISSION

RT41022

CO1	To be able to acquaint with HV transmission system with regard to p
CO2	To develop ability for determining corona, radio interference, audibl
CO3	To be able to acquire knowledge in transmission of HVDC power witl
CO4	To be able to develop knowledge with regard to choice of pulse conv
CO5	To develop knowledge of reactive power requirements of convention
CO6	Able to calculate voltage and current harmonics, and design of filters

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1				

	8	C02	1	1			
HVA	<u>₹</u>	C03	2	2	2		
	I	C04	2	2			
		C05	2	2	1		
		C06	2	2	1		

		CO1	Able to compute optimal scheduling of Generators.							
	K	CO2	Able to understand hydrothermal scheduling.							
	N	соз	Understand the unit commitment problem.							
	٥	CO4	Able to und	derstand im	portance of	the freque	ncy.			
	Z Z	CO5	Understand importance of PID controllers in single area and two are							
RT41023	Z C	CO6	Will understand reactive power control and line power compensatio							
741	<u>K</u>		PO1	PO2	PO3	PO4	PO5	PO6		
~	g	C01	3	2	1	1				
	Ξ	C02	3	2	1	1				
	YST	C03	2	1						
	R SYST	C03	2 2	1						
	POWER SYSTEM OPERATION AND CONTROL			1 1 2						

		CO1	Able to represent various types of signals .							
NO	CO2	Acquire proper knowledge to use various types of Transducers.								
	соз	Able to monitor and measure various parameters such as strain, velc								
	CO4	Acquire proper knowledge and working principle of various types of								
	CO5	Able to me	asure vario	us paramet	er like phase	e and frequ	ency of a sig			
	RT41025 INSTRUMENTATION	CO6	Acquire pro	oper knowle	edge and ab	le to handle	e various typ	oes of signal		
RT41025	Ė				_					
T41	Ŭ		PO1	PO2	PO3	PO4	PO5	PO6		
<u>.</u> ~	₽	C01	3	3	2	2	2	1		
	ISN	C02	3	3	3	3	1	1		
	_	C03	3	2	2	2	2	2		
		C04	2	2	2	3	2	1		
		C05	3	2	3	2	-	1		
		C06	2	2	3	2	2	2		

		CO1	Able to understand the various factors of distribution system.
	CO2 CO3 CO4		Able to design the substation and feeders.
			Able to determine the voltage drop and power loss
			Able to understand the protection and its coordination.
		CO5	Able to understand the effect of compensation on p.f improvement.
N COS		CO6	Able to understand the effect of voltage, current distribution system
029	<u>5</u>		•

RT41	I 포		PO1	PO2	PO3	PO4	PO5	PO6
œ	CTRICAL D	C01	3	3	1			
		C02	3	2	3			
		C03	3	2	2			
		C04	3	2	3			
	ELEC	C05	2	2	2			
ı		C06	2	3	3			

MICROPROCESSORS AND
MICROCONTROLLERS
LAB

CO1	Understand and apply the fundamentals of assembly level programn
CO2	Design interfacing circuits with 8086
соз	Design and implement 8051 microcontroller based systems

	PO1	PO2	PO3	PO4	PO5	PO6
C01					1	
C02					1	
C03					1	

ELECTRICAL SIMULATION LAB

CO1	Able to simulate integrator circuit, differentiator circuit, Boost conve
CO2	Able to simulate transmission line by incorporating line, load and tra
CO3	Able to perform transient analysis of RLC circuit and single machine (
CO4	Able to find load flow solution for a transmission network with Newt

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	2	2	2	
C02	2	2	2	2	2	
C03	1	1	1	1		
C04	1	2				

POWER SYSTEMS LAB

CO1	Able to understand the power flows and stability in power system.
CO2	Students can execute energy management systems functions at load
CO3	Able to understand affect of various faults in various power system of
CO4	Able to determine the parameters of various power system component

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	2	2	2	
C02	2	2	2	2	2	
C03	1	1	1	1		
C04	1	2				

			IV B.TECH II S
	CO1	CO1	understand the concepts of digital control systems and assemble var
		CO2	The theory of z-transformations and application for the mathematic

соз	Represent the discrete-time systems in state-space model and evaluation
CO4	Examine the stability of the system using different tests.
CO5	Study the conventional method of analyzing digital control systems i
CO6	Study the design of state feedback control by "the pole placement m

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	-	-	-	1	-
C02	3	3	1	-	1	-
C03	3	3	1	1	1	-
C04	1	1	-	-	1	-
C05	1	2	1	-	-	-
C06	3	3	3	1	1	-

SPECIAL ELECTRICAL MACHINES

RT42023C

RT42023C

CO1	Explain theory of operation and control of switched reluctance motor
CO2	Explain the performance and control of stepper motors, and their ap
соз	Describe the operation and characteristics of permanent magnet dc
CO4	Distinguish between brush dc motor and brush less dc motor.
CO5	Explain the theory of travelling magnetic field and applications of lin
CO6	Understand the significance of electrical motors for traction drives.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2		1	2	2	
C02	3	2	1	2	2	
C03	3	2	2	2	1	
C04	3	2	1	2	1	
C05	3	2	2	2	2	
C06	2	1	1	2	2	

FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEMS (FACTS)	
---	--

CO1	Determine power flow control in transmission lines by using FACTS c
CO2	Explain operation and control of voltage source converter.
CO3	Discuss compensation methods to improve stability and reduce pow
CO4	Explain the method of shunt compensation by using static VAR comp
CO5	Appreciate the methods of compensations by using series compensa
CO6	Explain the operation of modern power electronic controllers (Unifie

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	-	1	1	-
C02	2	1	-	1	-	-
C03	2	2	-	-	1	
C04	2	2	1	-	1	-
C05	2	2	1	-	-	-
C06	3	1	-	-	1	-

RT42024C	TECHNIQUES	C01	PO1	PO2	PO3	PO4	PO5	PO6	
024	g								
ں	l E	CO6	Able to study the applications of AI						
	ر (CO5	Able to stu	dy the fuzzy	/ logic syste	ms.			
		CO4	Able to study the fuzzy sets and operations.						
		CO3	Able to stu	dy the ANN	paradigms.				
		CO2	Able to stu	dy the mod	els and arch	nitecture of	artificial ne	ural networ	
		CO1	Able to stu	dy various r	methods of	Al			

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2				
C02	3	2				
C03	2	3				
C04	3	3				
C05	2	2				
C06	3	3				

Able to acquire the requisite skills and to apply the same to a given
Able to independently analyse and discuss complex inquiries/problet
Able to reflect on, evaluate, and critically assess one's own results ar
Able to document and present one's own work for a given target gro
Able to identify one's need for updating skills and knowledge and to

PO1 PO2 PO3 PO4 PO5 PO6

_	COS	Able to ide	ntity one's r	need for up	dating skills	and know	leage and to
PROJEC:		PO1	PO2	PO3	PO4	PO5	PO6
<u>=</u>	C01	3	2	2			
	C02	2	2	2	2		2
	C03	3	2	3	2	3	2
	C04	2	2	2	2	3	1
	C05	2	2	3	1	2	

JTE OF TEC	HNOLOGY						
ECTRONCIS	ENGINEER	ING					
O MATRIX							
M							
PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	2	3	3	-	2	2	-
-	1	2	3	-	2	3	2
-	1	3	2	-	2	3	2
-	2	3	2	-	3	2	2
-	1	2	2	-	3	2	2
-	1	2	3	-	2	2	2
	!	<u> </u>	Į.	<u> </u>	<u>l</u>	<u> </u>	Į
lications.							
rdinary dif	ferential eq	uations usii	ng Laplace t	ransforms.			
ordinary dif	ferential eq	uations usii	ng Laplace t	ransforms.			
ordinary dif	ferential eq	uations usii	ng Laplace t	ransforms.			
erdinary dif	ferential eq	PO9	ng Laplace t	PO11	PO12	PSO1	PSO2
		PO9 2			PO12 -	2	-
PO7	PO8	PO9 2 2	PO10	PO11			
PO7	PO8	PO9 2 2 2	PO10	PO11 -	-	2	- 2 -
PO7 - -	PO8 - -	PO9 2 2	PO10 - -	P011 - -	-	2	- 2
PO7 - - -	PO8 - - -	PO9 2 2 2	PO10 - -	PO11 - -	- - -	2 3 -	- 2 -
PO7 - - -	PO8 - - - -	PO9 2 2 2 2 2	PO10 - - -	PO11 - - -	- - -	2 3 -	- 2 - 2
PO7	PO8	PO9 2 2 2 2 1	PO10	PO11	- - - -	2 3 - - 3	- 2 - 2
PO7	PO8	PO9 2 2 2 2 1	PO10	PO11	- - - -	2 3 - - 3	- 2 - 2
PO7	PO8	PO9 2 2 2 2 1	PO10	PO11	- - - -	2 3 - - 3	- 2 - 2
PO7	PO8	PO9 2 2 2 2 1	PO10	PO11	- - - -	2 3 - - 3	- 2 - 2
PO7 ods.	PO8	PO9 2 2 2 2 1	PO10	PO11	- - - -	2 3 - - 3	- 2 - 2
PO7 ods.	PO8	PO9 2 2 2 2 1	PO10	PO11	- - - -	2 3 - - 3	- 2 - 2
PO7 ods.	PO8	PO9 2 2 2 2 1	PO10	PO11	- - - -	2 3 - - 3	- 2 - 2
PO7 ods.	PO8	PO9 2 2 2 1 1	PO10	PO11	- - - -	2 3 - - 3 2	- 2 - 2 - 1
PO7 ods.	PO8	PO9 2 2 2 1 1	PO10	PO11	- - - -	2 3 - - 3 2	- 2 - 2
PO7 ods.	PO8	PO9 2 2 2 1 1 1	PO10	PO11	- - - -	2 3 3 2	- 2 - 2 - 1 1 PSO2 -
PO7 ods.	PO8	PO9 2 2 2 1 1 1 PO9 1 1	PO10	PO11	- - - -	2 3 - - 3 2	- 2 - 2 - 1 PSO2 - 2
PO7 ods. al equation	PO8	PO9 2 2 2 1 1 1	PO10	P011		2 3 3 2	- 2 - 2 - 1 1 PSO2 -

-	-	3	-	-	-	2	2
-	-	3	-	-	-	2	2

oblems.

iysics and conduct experiments.

Acoustics& EM fields.

heory.

iconductor Physics.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	3	-	-	-	-	1	-
-	3	-	-	-	-	1	2
-	2	-	-	-	-	1	2
-	3	-	-	-	-	2	2
-	3	-	-	-	-	3	1
-	3	-	-	-	-	1	1

o the students that is relevant to resolving moral issues in engineering

I concepts to engineering decisions

engineering areas, and to provide an understanding of the interface between social,

in the implementation of the engineering projects.

the budding engineers and make them uncorrupted.

.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	3	-	-	1	1	2	1
-	2	-	-	3	2	1	2
-	2	-	-	1	1	2	1
-	2	-	-	1	-	-	2
-	3	-	-	1	1	-	1
-	3	-	-	1	1	1	2

s curves.

ections.

aight lines.

thic projections and isometric projections

aphic views to isometric views

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	1	-	-	1	1	-
-	-	1	-	-	1	1	2
-	-	1	-	-	1	1	2
-	-	1	-	-	1	2	2

-	-	1	-	-	1	3	1
-	-	1	-	-	1	1	1

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	3	2	-	2	2	-
-	-	2	2	-	2	3	2
-	-	2	2	-	2	2	2
-	-	2	2	-	3	2	2
-	-	2	2	-	2	2	3
-	-	2	3	-	2	2	2

ence like sound, acceleration &time.

lectrical circuits.

of interference & diffraction.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	1	-	-	-	-	-	1
-	-	-	1	-	-	2	-
-	-	-	1	-	-	1	-
-	-	-	-	-	-	3	2

eparations.

ets using proper tin smithytools.

e on assembling and disassembling aPC.

nowledge on basics of internet and worldwide web.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	1	1	-	1	1	-	-
-	1	1	-	-	-	-	-
-	1	1	-	1	1	-	-
-	1	1	-	-	-	-	-
-	-	-	2	-	-	1	1
-	-	1	1	-	-	2	2

-	-	1	1	-	-	1	2
-	-	2	2	1	-	-	-

	n 4
н	IVI

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	2	3	3	-	2	2	-
-	1	2	3	-	2	3	2
-	1	3	2	-	2	3	2
-	2	3	2	-	3	2	2
-	1	2	2	-	3	2	2
-	1	2	3	-	2	2	2

nt functions.

ations.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	2	-	-	-	2	-
-	-	2	-	-	-	3	2
-	-	2	-	-	-	-	-
-	-	2	-	-	-	-	2
-	-	1	-	-	-	3	-
-	-	1	-	-	-	2	1

ues.

es.

nforced plastics.

on nanotubes, liquid crystals etc.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	2	-	-	i	2	1
-	-	2	-	-	-	3	2
-	-	2	-	=	=	-	-

-	-	2	-	-	-	-	2
-	-	1	-	-	-	3	-
-	-	1	-	-	-	2	1

pplication.

oblems using graphical methods and law of triangle of forces.

of inertia including transfer methods and their applications.

s velocity and acceleration computation and methods of representing plane motion. Idents will acquire ability to apply knowledge of Mechanics.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	2	-	-	-	2	2
-	-	3	-	-	-	2	2
-	-	2	-	-	-	2	2
-	-	3	-	-	-	2	2
-	-	3	-	-	-	3	2
-	-	3	-	-	-	1	1

assive elements.

ameters i.e R, L, C. and f.

rems.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						3	
						3	1
						2	
					1	3	2
					1	2	3
						1	1

ms in C.

n.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	-	2	-
-	-	-	-	-	-	2	-
-	-	-	-	-	-	2	2

	-	-	-	-	-	2	2
-	-	-	ı	-	-	2	2
-	-	-	-	-	-	2	2

titrations.

er.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
2	-	-	-	-	2	2	2
	-	-	-	-	1	1	-
1	-	-	-	-	1	-	1
-	-	-	-	-	1	-	1
2	-	-	-	-	2	1	2
2	_	_	-	-	2	1	2

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	3	3	-	2	2	-
-	-	2	3	-	2	3	2
-	-	3	2	-	2	2	2
-	-	3	2	-	3	2	2
-	-	2	2	-	3	2	2
-	-	2	3	-	2	2	2

anguage.

nematical formulae

metic, and use the pre-processor

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	-	2	-
-	-	-	-	-	-	2	-
-	-	-	-	-	-	2	-

_	-	-	-	-	-	2	-
-	-	-	-	-	-	2	-
-	-	-	-	-	-	2	-

EM

lition.

ndition.

with different types of excitations.

k parameters.

ven network transfer function.

he response of a electrical network.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	2	2	1
-	-	-	-	-	2	2	1
-	-	-	-	-	1	2	1
-	-	-	-	-	1	2	1
-	-	-	-	-	2	2	1
-	-	-	-	-	1	1	1

ngines, evaluation and performance of different systems in IC engines explain the working principles of impulse & reaction turbines including their efficiencies

d the impact of jet on vanes, explain the working principles of hydraulic pumps including soverning operation

erent loads by considering various factors

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
2	0	0	0	2	0	3	1
0	0	0	0	2	1	3	1
1	0	0	0	2	1	2	2
0	0	0	0	2	2	2	1
0	0	0	0	2	1	3	1
0	0	0	0	2	1	1	1

o solve theoretical and applied problems.

m.

function, expectations, and distributions of random variables.

ampling distributions.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	2	2	
-	-	-	-	-	3	2	2

2	-	-	-	-	1	2	2
-	-	-	-	-	1	3	2
2	-	-	-	-	2	2	2
-	-	-	-	-	3	2	2

olving Laplace's or Possion's equations.

get's the concept of conduction and convection currents

of ampere's law and the Maxwell's second and third equations.

currents in magnetic field.

y stored in the magnetic field.

calculate induced Emf. Concepts of displacement current and Poynting vector and associated problem

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						3	
					1	3	2
					1	2	3
					1	2	2
						3	1
1						1	1

d commutat	ion.			
S.				

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						2	
						3	2
						3	2
						3	2
						3	2
						1	2

or lagging a	nd leading r	networks.			
:S.					
ed loads.					

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1					1	2	2

1			1	2	2
1			1	2	2
2			2	2	2
1			2	2	2

EM

id ecosystems.

t.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	2	2	-	-	-	2	-
2	3	2	-	-	-	3	2
2	2	2	-	-	-	-	-
2	2	2	-	-	-	-	2
3	3	1	-	-	-	3	-
2	2	1	-	-	-	2	1

les, able to simplify the logic expressions using Boolean laws and postulates and design ethod and tabular method.

conventional gates and various PLD's.

LA

ers, MSI Registers and Modes of Operation of Shift Registers, Universal Shift Registers able

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						3	
					1	3	2
					1	2	3
					1	3	2
					1	2	2
					2	3	3

e RC, RLC circuits

various digital circuits.

;

d analyze different types of Sampling Gates

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

-	-	-	-	-	2	3	3
-	-	-	-	-	2	3	3
-	-	-	-	-	3	3	2
-	-	-	-	-	1	3	3
-	-	-	-	-	-	2	2
-	-	-	-	-	-	2	2

ower plants.

wer plants.

ns and also estimate voltage drops in both types of distribution systems.

as insulated substations.

lifferent insulating materials.

and diversity factor on the cost of generation of electrical power and also able to identify

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						3	
					1	3	2
					1	2	3
					1	2	2
						3	1
1						1	1

former.

ansformer.

anging methods and 3-phase to 2-phase transformation.

tion motor.

motor and induction generator.

nduction motors.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
0	0	0	0	0		2	
0	0	0	0	0	1	2	2
0	0	0	0	0	1	2	3
0	0	0	0	0	2	2	2
0	0	0	0	0		2	1
0	0	0	0	0		1	1

nination of overall transfer function using block diagram algebra and signal flow graphs.

r systems and to determine error constants.

ems using Routh's stability criterion and the root locus method.

nse methods.

performance from Bode diagrams.

the response. Understanding the concepts of controllability and observability.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	1	
					1	1	
					1	2	
					1	2	
					1	1	1
					1	2	1

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
					1	2	1
					1	2	1
					1	2	1

des			

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
					1	2	1
					1	2	1
					1	2	1
					1	2	1

EM

of demand like law determinants.

t markets.

:s and demerits of both public and private enterprises.

Il statements.

o evaluate capital budgeting.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	2	3	2

-	-	-	-	-	2	3	3
-	-	-	-	-	2	3	2
-	-	-	-	-	2	3	3
-	-	2	-	2	2	3	2
-	-	2	-	2	2	3	3

and current for ac and dc.

and energy – able to calibrate energy meter by suitable method

ers

neasuring instruments

ing CRO. Able to use digital instruments in electrical measurements.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	3	2
					1	3	1
					1	3	1
					1	1	1
1					1	2	1
2					1	3	1

s for using calculation and behavior during different operating conditions.

and medium type which would have application in medium and high voltage power in transmission lines. such output will be useful in protecting transmission line insulators on line for protection of connects equipments,viz.power transformer and system is smitting different level of power.

sion line for safe and efficient performance during operating condition of voltage and

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	2
					1	3	1
					1	1	1
					1	1	1
					1	2	1
					1	3	1

tors.		
ngs.		
pole synchronous generators.		
,		

ed to an infinite bus or when operating in parallel.

torque and power factor correction.

ıs motor.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	3	2
					1	3	1
					1	3	1
					1	1	1
					1	2	1
					1	3	1

nd analyze the operation of diode bridge rectifier.

ntroller and half-wave phase controlled rectifiers.

ze harmonics in the input current.

converter.

uency dc-dc converters.

for voltage control and harmonic mitigation.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
0	0	0	0	0	0	3	
0	0	0	0	0	1	3	2
0	0	0	0	0	1	2	3
0	0	0	0	0	1	3	2
0	0	0	0	0	1	2	3
0	0	0	0	0	2	3	2

finitions and Draw and explain the open-loop configuration and feedback configuration of closed loop voltage gain, the input resistance, the output resistance for Non-Ideal Opmic Operations, and Instrumentation Amplifier with relevant Circuits and Design Operations.

NBPF, Notch Filter, ALL pass filters and Study the operation & applications of PLA.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	3	2
					1	3	1
					1	3	1
					1	1	1
1					1	2	1
					1	3	1

ıctı	ion	m	nt	Λŀ	·c

irious methods.

e of three-phase synchronous motor.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
					1	2	1
					1	2	1
					1	2	1

C and A.C. servo motors and synchronous motors

ag-lead compensators

the transfer function of DC motor

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		-		-		1	-
		-		1		1	-
		-		-		-	-
		-		1		1	-

ctual properties (IPs) and their roles in contributing to organizational competitiveness. ual Property.

wnership, scope of protection as well as the ways to create and to extract value from IP. I sectors for the purposes of product and technology development.

available to the IP owner and describe the precautious steps to be taken to prevent

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	-	2	2	2	-	1	2
2	-	2	2	2	-	2	2
2	-	2	2	3	-	1	-
3	-	-	2	2	ı	2	3
-	-	2	-	2	-	-	2
-	-	2	2	-	-	2	1

SEM

ation to high voltage circuit breakers of air, oil, vacuum, SF6 gas type.

res of different types of electromagnetic protective relays.

cur in high power generator and transformers and protective schemes used for all protectiones used for feeders and bus bar protection.

w to application in the system.

ing in the system, including existing protective schemes required for insulation co-ordination

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

			2	
			3	2
			3	2
			3	2
			3	2
			1	2

nd explore the evalution of microprocessors.							

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	
					1	2	
					1	1	2
					1	2	2
					1	2	1
					1		2

olications

suitable applications.

nt illuminating sources.

and recommend the most efficient illuminating sources and should be able to design differ of traction motors.

ration.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	2						
	1	2	1	1	1		
		1		1	1		
1		1	2		1		
2	1		2	2			
		1		2			

d form a Ybus matrix for a power system network with or without mutual coupling	ζS.
sing different types of load flow methods and	

provide data for the design of protective devices.

anced power system network.

cepts of a power system.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	2	2				3	
	1	2	1	1	1	3	2
		1		1	1	2	3
1		1	2		1	2	2
2	1		2	2		3	1
		1		2		1	1

ing methods.

s and four quadrant operation of dc motors using dual converters.

voltage controllers and voltage source inverters.

ip power recovery schemes.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						2	1
						2	1
						2	1
						2	1
						2	1
						2	1

entify various Business Administrative problems.

introl charts for testing the efficiency of the production and the quality of the products chieve their stipulated work targets and the application of the Job Evaluation and Merit time duration in software development projects and apply the CPM & DERT analysis ttain the Vision and Mission of the organization. Analyze the organizational strength by QM and JIT to achieve the quality and benchmarking the standards with improved business

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	-	1	2
-	1	2	1	2	-	2	2
-	-	-	-	-	-	1	2
-	-	2	2	2	-	1	3
-	1	3	2	2	-	1	3
-	-	-	-	-	-	1	1

and analyze gate drive circuits of IGBT.

I wave bridge converters with both resistive and inductive loads.

or with resistive and inductive loads.

singlephase square wave inverter and PWM inverter.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		1					
		1					
		1	·				
		1					

current, power, energy and electrical characteristics of resistance, inductance and

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	
						1	

EIVI		
earth's surface.		

ratio.

and geothermal systems.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1		
					1		
					2		
					2		
					1		
					1		

ower handling capacity, losses, conductor resistance and electrostatic field associate with e noise generation and frequency spectrum for single and three phase transmission lines. h regard to terminal equipments, type of HVDC connectivity and planning of HVDC system. version, control characteristic, firing angle control and effect of source impedance. nal control, filters and reactive power compensation in AC. side of HVDC system. for six and twelve pulse conversion.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

			1	1
			1	1
			1	1
			1	1

a systems.

n.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
						2	1
					1	2	1
						2	1
					1	2	1
					1	2	1

ocity, temperature, pressure etc.

digital voltmeters.

nal with the help of CRO.

analyzers.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
					2	1	2
					1	-	1
					-	2	2
					-	1	1
					1	2	3

performance.			

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						2	
						3	2
						3	2
						3	2
						3	2
						1	2

ning of microprocessor.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	1	
					1	1	1
					1	1	

erter, Buck converter, full convertor and PWM inverter.

nsformer models.

connected to infinite bus (SMIB).

:on–Rampson method.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		1					2
		1					2
		1					1
		1					1

I dispatch centre.

components.

ents.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		1					2
		1					2
		1					1
		1					1

SEM

ious components associated with it. Advantages compared to the analog type. al analysis of digital control systems.

uation of state transition matrix.

n the w-plane.

nethod."

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	1	2	2
-	-	-	-	-	1	3	1
-	-	-	-	-	1	3	1
-	-	-	-	-	1	1	1
1		-	-	-	1	2	1
2	-	-	-	-	1	2	1

r. plications.

motor.

ear motors.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1		1
					1		1
					1		1
					1		1
					1		1
					1		1

ontrollers.

er oscillations in the transmission lines.

ensators.

itors.

ed Power Quality Conditioner and Interline Power Flow Controller).

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	1	2	1
-		-	-	-	2	1	2
-	-	-	-	-	1	1	2
-	-	-	-	-	-	2	1
-	-	-	-	-	-	2	1
-	-	-	-	-	1	2	3

ks.			

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1		2
					1		2
					2		2
					2		2
					2		2
					2		2

problem in the relevant technical area.

ms within the given constraints and handle larger problems at an advanced level within nd correlate it with other scientific results.

oup, with strict requirements on structure, format and language usage.

continuously develop one's own competencies

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		2				3	
		2		3	1	2	2
		3		2	1	2	3
		3		3	1	2	2
		2		2	1	3	1

